Showing 1 - 5 of 5
Propensity score based-estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the...
Persistent link: https://www.econbiz.de/10011168915
In observational studies the overall aim when fitting a model for the propensity score is to reduce bias for an estimator of the causal effect. For this purpose guidelines for covariate selection for propensity score models have been proposed in the causal inference literature. To make the...
Persistent link: https://www.econbiz.de/10010818792
In this paper, we show that a two-component normal mixture model provides a good approximation to the logistic distribution. This model is an improvement over using the normal distribution and is comparable with using the t-distribution as approximating distributions. The result from using the...
Persistent link: https://www.econbiz.de/10010743580
In observational studies, the non-parametric estimation of a binary treatment effect is often performed by matching each treated individual with a control unit which is similar in observed characteristics (covariates). In practical applications, the reservoir of covariates available may be...
Persistent link: https://www.econbiz.de/10005651862
Observational studies in which the effect of a nonrandomized treatment on an outcome of interest is estimated are common in domains such as labour economics and epidemiology. Such studies often rely on an assumption of unconfounded treatment when controlling for a given set of observed...
Persistent link: https://www.econbiz.de/10010613196