Showing 1 - 6 of 6
We show that the weak infinitesimal generator of a class of Markov processes acts on bounded continuous functions with bounded continuous second derivative as a singular integral with respect to the orthogonality measure of the explicit family of polynomials.
Persistent link: https://www.econbiz.de/10011064907
Different concepts of neutrality have been studied in the literature in context of independence properties of vectors of random probabilities, in particular, for Dirichlet random vectors. Some neutrality conditions led to characterizations of the Dirichlet distribution. In this paper we provide...
Persistent link: https://www.econbiz.de/10011042006
We consider a problem of characterization of continuous distributions for which linearity of regression of overlapping order statistics, <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\mathbb {E}(X_{i:m}|X_{j:n})=aX_{j:n}+b$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="double-struck">E</mi> <mrow> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mo>:</mo> <mi>m</mi> </mrow> </msub> <mo stretchy="false">|</mo> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>:</mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mi>a</mi> <msub> <mi>X</mi> <mrow> <mi>j</mi> <mo>:</mo> <mi>n</mi> </mrow> </msub> <mo>+</mo> <mi>b</mi> </mrow> </math> </EquationSource> </InlineEquation>, <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$m\le n$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>m</mi> <mo>≤</mo> <mi>n</mi> </mrow> </math> </EquationSource> </InlineEquation>, holds. Due to a new...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10011151389
Persistent link: https://www.econbiz.de/10005616244
Persistent link: https://www.econbiz.de/10005756415
Persistent link: https://www.econbiz.de/10008674151