Showing 1 - 10 of 32,297
Most papers on high-dimensional statistics are based on the assumption that none of the regressors are correlated with the regression error, namely, they are exogenous. Yet, endogeneity arises easily in high-dimensional regression due to a large pool of regressors and this causes the...
Persistent link: https://www.econbiz.de/10011109827
Estimating and assessing the risk of a large portfolio is an important topic in financial econometrics and risk management. The risk is often estimated by a substitution of a good estimator of the volatility matrix. However, the accuracy of such a risk estimator for large portfolios is largely...
Persistent link: https://www.econbiz.de/10011112630
We study the estimation of a high dimensional approximate factor model in the presence of both cross sectional dependence and heteroskedasticity. The classical method of principal components analysis (PCA) does not efficiently estimate the factor loadings or common factors because it essentially...
Persistent link: https://www.econbiz.de/10011112633
This paper deals with estimation of high-dimensional covariance with a conditional sparsity structure, which is the composition of a low-rank matrix plus a sparse matrix. By assuming sparse error covariance matrix in a multi-factor model, we allow the presence of the cross-sectional correlation...
Persistent link: https://www.econbiz.de/10011112962
This paper addresses the estimation of the nonparametric conditional moment restricted model that involves an infinite-dimensional parameter g0. We estimate it in a quasi-Bayesian way, based on the limited information likelihood, and investigate the impact of three types of priors on the...
Persistent link: https://www.econbiz.de/10011113752
This paper proposes a new Bayesian approach for estimating, nonparametrically, parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove consistency,...
Persistent link: https://www.econbiz.de/10011158976
This paper proposes a new Bayesian approach for estimating, nonparametrically, parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove consistency,...
Persistent link: https://www.econbiz.de/10011160752
In structural economic models, individuals are usually characterized as solving a decision problem that is governed by a finite set of parameters. This paper discusses the nonparametric estimation of the probability density function of these parameters if they are allowed to vary continuously...
Persistent link: https://www.econbiz.de/10010827520
This paper proposes a new Bayesian approach for estimating, nonparametrically, functional parameters in econometric models that are characterized as the solution of a linear inverse problem. By using a Gaussian process prior distribution we propose the posterior mean as an estimator and prove...
Persistent link: https://www.econbiz.de/10010899494
We propose a quasi-Bayesian nonparametric approach to estimating the structural relationship φ among endogenous variables when instruments are available. We show that the posterior distribution of φ is inconsistent in the frequentist sense. We interpret this fact as the ill-posedness of the...
Persistent link: https://www.econbiz.de/10011052327