Showing 1 - 10 of 55
Fixed effects estimators in nonlinear panel models with fixed and short time series length T usually suffer from inconsistency because of the incidental parameters problem first noted by Neyman and Scott (1948). Moreover, even if T grows but at a rate not faster than the cross sectional sample...
Persistent link: https://www.econbiz.de/10010817506
Based on the series long run variance estimator, we propose a new class of over-identification tests that are robust to heteroscedasticity and autocorrelation of unknown forms. We show that when the number of terms used in the series long run variance estimator is fixed, the conventional J...
Persistent link: https://www.econbiz.de/10011052268
The paper develops an asymptotically valid F test that is robust to spatial autocorrelation in a GMM framework. The test is based on the class of series covariance matrix estimators and ?fixed-smoothing asymptotics. The fi?xed-smoothing asymptotics and F approximation are established under mild...
Persistent link: https://www.econbiz.de/10010567101
This paper studies robust inference for linear panel models with fixed effects in the presence of heteroskedasticity and spatiotemporal dependence of unknown forms. We propose a bivariate kernel covariance estimator that is flexible to nest existing estimators as special cases with certain...
Persistent link: https://www.econbiz.de/10009322600
This paper considers spatial heteroskedasticity and autocorrelation consistent (spatial HAC) estimation of covariance matrices of parameter estimators. We generalize the spatial HAC estimator introduced by Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with moment...
Persistent link: https://www.econbiz.de/10008866469
This paper studies robust inference for linear panel models with fixed effects in the presence of heteroskedasticity and spatiotemporal dependence of unknown forms. We propose a bivariate kernel covariance estimator that nests existing estimators as special cases. Our estimator improves upon...
Persistent link: https://www.econbiz.de/10010703141
Historians have claimed that Canadian manufacturing grew in the nineteenth century largely because of the National Policy tariff. . In the case of the cotton textile sector, our findings cast serious doubt on the long-standing idea that the National Policy was indispensable to the growth of...
Persistent link: https://www.econbiz.de/10011210760
A new family of kernels is suggested for use in heteroskedasticity and autocorrelation consistent (HAC) and long run variance (LRV) estimation and robust regression testing. The kernels are constructed by taking powers of the Bartlett kernel and are intended to be used with no truncation (or...
Persistent link: https://www.econbiz.de/10005368997
A new class of kernels for long-run variance and spectral density estimation is developed by exponentiating traditional quadratic kernels. Depending on whether the exponent parameter is allowed to grow with the sample size, we establish different asymptotic approximations to the sampling...
Persistent link: https://www.econbiz.de/10005400824
Employing power kernels suggested in earlier work by the authors (2003), this paper shows how to re.ne methods of robust inference on the mean in a time series that rely on families of untruncated kernel estimates of the long-run parameters. The new methods improve the size properties of...
Persistent link: https://www.econbiz.de/10005464005