Showing 1 - 10 of 93
We propose a bootstrap-based robust high-confidence level upper bound (Robust H-CLUB) for assessing the risks of large portfolios. The proposed approach exploits rank-based and quantile-based estimators, and can be viewed as a robust extension of the H-CLUB method (Fan et al., 2015). Such an...
Persistent link: https://www.econbiz.de/10011120466
Most papers on high-dimensional statistics are based on the assumption that none of the regressors are correlated with the regression error, namely, they are exogenous. Yet, endogeneity arises easily in high-dimensional regression due to a large pool of regressors and this causes the...
Persistent link: https://www.econbiz.de/10011109827
Estimating and assessing the risk of a large portfolio is an important topic in financial econometrics and risk management. The risk is often estimated by a substitution of a good estimator of the volatility matrix. However, the accuracy of such a risk estimator for large portfolios is largely...
Persistent link: https://www.econbiz.de/10011112630
This paper deals with estimation of high-dimensional covariance with a conditional sparsity structure, which is the composition of a low-rank matrix plus a sparse matrix. By assuming sparse error covariance matrix in a multi-factor model, we allow the presence of the cross-sectional correlation...
Persistent link: https://www.econbiz.de/10011112962
Persistent link: https://www.econbiz.de/10010713427
Estimating and assessing the risk of a large portfolio is an important topic in financial econometrics and risk management. The risk is often estimated by a substitution of a good estimator of the volatility matrix. However, the accuracy of such a risk estimator for large portfolios is largely...
Persistent link: https://www.econbiz.de/10010607826
Through collecting and arranging research findings in recent years, connotation, necessity, power mechanism, support system and foreign experience and implications of low carbon industry are reviewed and discussed. It is believed that future study should continue to follow up foreign latest...
Persistent link: https://www.econbiz.de/10011168247
We propose a semiparametric method for conducting scale-invariant sparse principal component analysis (PCA) on high-dimensional non-Gaussian data. Compared with sparse PCA, our method has a weaker modeling assumption and is more robust to possible data contamination. Theoretically, the proposed...
Persistent link: https://www.econbiz.de/10010823960
We propose new, optimal methods for analyzing randomized trials, when it is suspected that treatment effects may differ in two predefined subpopulations. Such subpopulations could be defined by a biomarker or risk factor measured at baseline. The goal is to simultaneously learn which...
Persistent link: https://www.econbiz.de/10010951793
We present a new class of methods for high dimensional non-parametric regression and classification called sparse additive models. Our methods combine ideas from sparse linear modelling and additive non-parametric regression. We derive an algorithm for fitting the models that is practical and...
Persistent link: https://www.econbiz.de/10008479739