Showing 1 - 10 of 155
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10009395940
We propose an estimation method that circumvents the path dependence problem existing in Change-Point (CP) and Markov Switching (MS) ARMA models. Our model embeds a sticky infinite hidden Markov-switching structure (sticky IHMM), which makes possible a self-determination of the number of regimes...
Persistent link: https://www.econbiz.de/10011094059
Does commodity price volatility increase when inventories are low? We are the first ones to document this relationship. To that aim, we estimate asym- metric volatility models for a large set of commodities over 1994-2011. Since inventories are hard to measure, especially for high frequency...
Persistent link: https://www.econbiz.de/10011095280
We present an estimation and forecasting method, based on a differential evolution MCMC method, for inference in GARCH models subjected to an unknown number of structural breaks at unknown dates. We treat break dates as parameters and determine the number of breaks by computing the marginal...
Persistent link: https://www.econbiz.de/10011116269
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10011052313
We present an algorithm, based on a differential evolution MCMC method, for Bayesian inference in AR-GARCH models subject to an unknown number of structural breaks at unknown dates. Break dates are directly treated as parameters and the number of breaks is determined by the marginal likelihood...
Persistent link: https://www.econbiz.de/10010927663
Dynamic volatility and correlation models with fixed parameters are restrictive for time series subject to breaks. GARCH and DCC models with changing parameters are specified using the sticky infinite hidden Markov-chain framework. Estimation by Bayesian inference determines the adequate number...
Persistent link: https://www.econbiz.de/10010927665
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10010610474
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10010615163
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10009371456