Showing 1 - 10 of 17
Persistent link: https://www.econbiz.de/10001625994
Persistent link: https://www.econbiz.de/10001791792
Multivariate GARCH models do not perform well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this paper, we show how...
Persistent link: https://www.econbiz.de/10013040932
This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of time-varying conditional heteroskedasticity in large universes....
Persistent link: https://www.econbiz.de/10011868115
Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is...
Persistent link: https://www.econbiz.de/10011518597
Many researchers seek factors that predict the cross-section of stock returns. The standard methodology sorts stocks according to their factor scores into quantiles and forms a corresponding long-short portfolio. Such a course of action ignores any information on the covariance matrix of stock...
Persistent link: https://www.econbiz.de/10011571257
Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is...
Persistent link: https://www.econbiz.de/10011640555
Conditional heteroskedasticity of the error terms is a common occurrence in financial factor models, such as the CAPM and Fama-French factor models. This feature necessitates the use of heteroskedasticity consistent (HC) standard errors to make valid inference for regression coefficients. In...
Persistent link: https://www.econbiz.de/10014232090
Persistent link: https://www.econbiz.de/10012620051
Multivariate GARCH models do not perform well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation of the unconditional correlation matrix. In this paper, we show how...
Persistent link: https://www.econbiz.de/10012584099