Showing 1 - 10 of 286
One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also...
Persistent link: https://www.econbiz.de/10010392823
Persistent link: https://www.econbiz.de/10010410204
Persistent link: https://www.econbiz.de/10010438068
This note discusses some aspects of the paper by Hu and Tsay (2014), "Principal Volatility Component Analysis". The key issues are considered, and are also related to existing conditional covariance and correlation models. Some caveats are given about multivariate models of time-varying...
Persistent link: https://www.econbiz.de/10010250536
Persistent link: https://www.econbiz.de/10010348324
The three most popular univariate conditional volatility models are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the exponential GARCH (or...
Persistent link: https://www.econbiz.de/10010417180
Persistent link: https://www.econbiz.de/10010359780
The three most popular univariate conditional volatility models are the generalized autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev (1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and the exponential GARCH (or...
Persistent link: https://www.econbiz.de/10010405194
Persistent link: https://www.econbiz.de/10010410186
Persistent link: https://www.econbiz.de/10010507684