Showing 1 - 10 of 23
Persistent link: https://www.econbiz.de/10001426341
Persistent link: https://www.econbiz.de/10000897484
Persistent link: https://www.econbiz.de/10003797288
In empirical work on multivariate financial time series, it is common to postulate a Multivariate GARCH model. We show that the popular Gaussian quasi-maximum likelihood estimator of MGARCH models is very sensitive to outliers in the data. We propose to use robust M-estimators and provide...
Persistent link: https://www.econbiz.de/10014220834
We describe the package MSGARCH, which implements Markov-switching GARCH models in R with efficient C++ object-oriented programming. Markov-switching GARCH models have become popular methods to account for regime changes in the conditional variance dynamics of time series. The package MSGARCH...
Persistent link: https://www.econbiz.de/10012902834
We propose a jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns. It disentangles covariance estimation into variance and correlation components. This allows to estimate correlations over lower sampling frequencies, to...
Persistent link: https://www.econbiz.de/10013115577
Persistent link: https://www.econbiz.de/10009743433
Persistent link: https://www.econbiz.de/10008989131
We perform a large-scale empirical study to compare the forecasting performance of single-regime and Markov-switching GARCH (MSGARCH) models from a risk management perspective. We find that, for daily, weekly, and ten-day equity log-returns, MSGARCH models yield more accurate Value-at-Risk,...
Persistent link: https://www.econbiz.de/10012902294
We apply univariate GARCH models to construct a computationally simple filter for estimating the conditional correlation matrix of asset returns. The proposed Variance Implied Conditional Correlation (VICC) exploits the polarization result that links the correlation between two standardized...
Persistent link: https://www.econbiz.de/10012852852