Showing 1 - 10 of 51
Persistent link: https://www.econbiz.de/10009743433
Accurate prediction of the frequency of extreme events is of primary importance in many financialapplications such as Value-at-Risk (VaR) analysis. We propose a semi-parametric method for VaRevaluation. The largest risks are modelled parametrically, while smaller risks are captured by the...
Persistent link: https://www.econbiz.de/10010533206
Persistent link: https://www.econbiz.de/10012243444
Persistent link: https://www.econbiz.de/10012204110
The main purpose of this handbook is to illustrate the mathematically fundamental implementation of various volatility models in the banking and financial industries, both at home and abroad, through use of real-world, time-sensitive applications. Conceived and written by over two-dozen experts...
Persistent link: https://www.econbiz.de/10009410416
Persistent link: https://www.econbiz.de/10001932675
We propose a jump robust positive semidefinite rank-based estimator for the daily covariance matrix based on high-frequency intraday returns. It disentangles covariance estimation into variance and correlation components. This allows to estimate correlations over lower sampling frequencies, to...
Persistent link: https://www.econbiz.de/10013115577
Persistent link: https://www.econbiz.de/10008989131
We perform a large-scale empirical study to compare the forecasting performance of single-regime and Markov-switching GARCH (MSGARCH) models from a risk management perspective. We find that, for daily, weekly, and ten-day equity log-returns, MSGARCH models yield more accurate Value-at-Risk,...
Persistent link: https://www.econbiz.de/10012902294
We apply univariate GARCH models to construct a computationally simple filter for estimating the conditional correlation matrix of asset returns. The proposed Variance Implied Conditional Correlation (VICC) exploits the polarization result that links the correlation between two standardized...
Persistent link: https://www.econbiz.de/10012852852