Showing 1 - 5 of 5
By design a wavelet's strength rests in its ability to localize a process simultaneously in time-scalespace. The wavelet's ability to localize a time series in time-scale space directly leads to the computationalefficiency of the wavelet representation of a N £ N matrix operator by allowing...
Persistent link: https://www.econbiz.de/10005046475
By design a wavelet's strength rests in its ability to localize a process simultaneously in time-scalespace. The wavelet's ability to localize a time series in time-scale space directly leads to the computationalefficiency of the wavelet representation of a N £ N matrix operator by allowing the...
Persistent link: https://www.econbiz.de/10005007688
By design a wavelet's strength rests in its ability to localize a process simultaneously in time-scalespace. The wavelet's ability to localize a time series in time-scale space directly leads to the computationalefficiency of the wavelet representation of a N £ N matrix operator by allowing the...
Persistent link: https://www.econbiz.de/10014620822
In this paper we apply compactly supported wavelets to the ARFIMA(p,d,q) long-memory process to develop an alternative maximum likelihood estimator of the differencing parameter, d, that is invariant to the unknown mean and model specification, and to the level of contamination. We show that...
Persistent link: https://www.econbiz.de/10005407968
By design a wavelet's strength rests in its ability to simultaneously localize a process in time-scale space. The wavelet's ability to localize a time series in time-scale space directly leads to the computational efficiency of the wavelet representation of a N X N matrix operator by allowing...
Persistent link: https://www.econbiz.de/10005119098