Showing 1 - 10 of 31
This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel - typically a posterior density kernel - using an adaptive mixture of...
Persistent link: https://www.econbiz.de/10012971949
This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel – typically a posterior density kernel – using an adaptive mixture...
Persistent link: https://www.econbiz.de/10012951941
This paper presents the R-package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture...
Persistent link: https://www.econbiz.de/10010504035
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel...
Persistent link: https://www.econbiz.de/10011504818
Persistent link: https://www.econbiz.de/10011485373
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide, Opschoor and Van Dijk (2012), provides an automatic and flexible method to approximate a non-elliptical target density using...
Persistent link: https://www.econbiz.de/10011441581
Persistent link: https://www.econbiz.de/10011326076
Persistent link: https://www.econbiz.de/10011708508
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide, Opschoor and Van Dijk (2012), provides an automatic and flexible method to approximate a non-elliptical target density using...
Persistent link: https://www.econbiz.de/10013000545
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of...
Persistent link: https://www.econbiz.de/10013108670