Showing 1 - 10 of 21
This paper introduces a parsimonious and yet flexible nonnegative semiparametric model to forecast financial volatility. The new model extends the linear nonnegative autoregressive model of Barndorff-Nielsen & Shephard (2001) and Nielsen & Shephard (2003) by way of a power transformation. It is...
Persistent link: https://www.econbiz.de/10008521812
Maximum likelihood estimation of the persistence parameter in the discrete time unit root model is known for suffering from a downward bias. The bias is more pronounced in the continuous time unit root model. Recently Chambers and Kyriacou (2010) introduced a new jackknife method to remove the...
Persistent link: https://www.econbiz.de/10010539802
Maximum likelihood estimation of the persistence parameter in the discrete time unit root model is known for suffering from a downward bias. The bias is more pronounced in the continuous time unit root model. Recently Chambers and Kyriacou (2010) introduced a new jackknife method to remove the...
Persistent link: https://www.econbiz.de/10009318890
This paper introduces a parsimonious and yet flexible nonnegative semiparametric model to forecast financial volatility. The new model extends the linear nonnegative autoregressive model of Barndorff-Nielsen & Shephard (2001) and Nielsen & Shephard (2003) by way of a power transformation. It is...
Persistent link: https://www.econbiz.de/10010561673
A new jackknife method is introduced to remove the first order bias in unit root models. It is optimal in the sense that it minimizes the variance among all the jackknife estimators of the form considered in Phillips and Yu (2005) and Chambers and Kyriacou (2013) after the number of subsamples...
Persistent link: https://www.econbiz.de/10011208314
It is well-known that maximum likelihood (ML) estimation of the autoregressive parameter of a dynamic panel data model with fixed effects is inconsistent under fixed time series sample size (T) and large cross section sample size (N) asymptotics. The estimation bias is particularly relevant in...
Persistent link: https://www.econbiz.de/10005593442
It is well-known that maximum likelihood (ML) estimation of the autoregressive parameter of a dynamic panel data model with .xed eects is inconsistent under .xed time series sample size (T) and large cross section sample size (N) asymptotics. The estimation bias is particularly relevant in...
Persistent link: https://www.econbiz.de/10009363601
This paper introduces a parsimonious and yet flexible nonnegative semiparametric model to forecast financial volatility. The new model extends the linear nonnegative autoregressive model of Barndorff-Nielsen & Shephard (2001) and Nielsen & Shephard (2003) by way of a power transformation. It is...
Persistent link: https://www.econbiz.de/10009363893
First order autoregression is shown to satisfy a limit theory which is uniform over stationary values of the autoregressive coefficient rho = rho_{n} in [0,1) provided (1 - rho_{n})n approaches infinity. This extends existing Gaussian limit theory by allowing for values of stationary rho that...
Persistent link: https://www.econbiz.de/10005463913
HAC estimation commonly involves the use of prewhitening filters based on simple autoregressive models. In such applications, small sample bias in the estimation of autoregressive coefficients is transmitted to the recoloring filter, leading to HAC variance estimates that can be badly biased....
Persistent link: https://www.econbiz.de/10005464039