Showing 1 - 10 of 95
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010303678
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
This study proposes a novel framework for the joint modelling of commodity forward curves. Its key contribution is twofold. First, dynamic correlation models are applied in this context as part of the modelling scheme. Second, we introduce a family of dynamic conditional correlation models based...
Persistent link: https://www.econbiz.de/10010318781
This study proposes a novel framework for the joint modelling of commodity forward curves. Its key contribution is twofold. First, dynamic correlation models are applied in this context as part of the modelling scheme. Second, we introduce a family of dynamic conditional correlation models based...
Persistent link: https://www.econbiz.de/10009631566
Persistent link: https://www.econbiz.de/10010504813
Persistent link: https://www.econbiz.de/10013334598
Persistent link: https://www.econbiz.de/10003804813
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10003634717
Persistent link: https://www.econbiz.de/10003562219
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10010263700