Showing 1 - 10 of 14
Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric...
Persistent link: https://www.econbiz.de/10010310791
In many regression applications both the independent and dependent variables are measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different nonparametric techniques, regression splines and kernel...
Persistent link: https://www.econbiz.de/10010310815
Over the last four decades, several methods for selecting the smoothing parameter, generally called the bandwidth, have been introduced in kernel regression. They differ quite a bit, and although there already exist more selection methods than for any other regression smoother we can still see...
Persistent link: https://www.econbiz.de/10010329908
A data-driven optimal decomposition of time series with trend-cyclical and seasonal components as well as the estimation of derivatives of the trend-cyclical is considered. The time series is smoothed by locally weighted regression with polynomials and trigonometric functions as local...
Persistent link: https://www.econbiz.de/10010398003
Cross-validation is the most common data-driven procedure for choosing smoothing parameters in nonparametric regression. For the case of kernel estimators with iid or strong mixing data, it is well-known that the bandwidth chosen by crossvalidation is optimal with respect to the average squared...
Persistent link: https://www.econbiz.de/10011445799
Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric...
Persistent link: https://www.econbiz.de/10010956402
In many regression applications both the independent and dependent variables are measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different nonparametric techniques, regression splines and kernel...
Persistent link: https://www.econbiz.de/10010956490
A data-driven optimal decomposition of time series with trend-cyclical and seasonal components as well as the estimation of derivatives of the trend-cyclical is considered. The time series is smoothed by locally weighted regression with polynomials and trigonometric functions as local...
Persistent link: https://www.econbiz.de/10010958367
This paper contains the results of a non parametric multi-step ahead forecast for the monthly Colombian inflation, using Mean conditional Kernel estimation over inflation changes, with no inclusion of exogenous variables. The results are compared with those from an ARIMA and a nonlinear STAR....
Persistent link: https://www.econbiz.de/10005783908
In this paper we propose a flexible method for estimating a receiver operating characteristic (ROC) curve that is based on a continuous-scale test. The approach is easily understood and efficiently computed, and robust to the smooth parameter selection, which needs intensive computation when...
Persistent link: https://www.econbiz.de/10005278880