Showing 1 - 10 of 303
Hierarchical Bayes models free researchers from computational constraints and allow for the development of more realistic models of buyer behavior and decision making. Moreover, this freedom enables exploration of marketing problems that have proven elusive over the years, such as models for...
Persistent link: https://www.econbiz.de/10014028415
We contribute to the non-life experience ratemaking literature by introducing a computationally efficient approximation algorithm for the Bayesian premium in models with dynamic random effect, where the risk of a policyholder is governed by an individual process of unobserved heterogeneity....
Persistent link: https://www.econbiz.de/10012850507
The field of marketing has witnessed substantial improvement in modeling household level heterogeneity. However, relatively little has been written about how modeling household heterogeneity translates into better marketing decisions. In this paper, we study the impact of household level...
Persistent link: https://www.econbiz.de/10014035775
We discuss Bayesian inferential procedures within the family of instrumental variables regression models and focus on two issues: existence conditions for posterior moments of the parameters of interest under a flat prior and the potential of Direct Monte Carlo (DMC) approaches for efficient...
Persistent link: https://www.econbiz.de/10010326354
We propose a new methodology for the Bayesian analysis of nonlinear non-Gaussian state space models with a Gaussian time-varying signal, where the signal is a function of a possibly high-dimensional state vector. The novelty of our approach is the development of proposal densities for the joint...
Persistent link: https://www.econbiz.de/10010326393
Persistent link: https://www.econbiz.de/10010326499
This paper presents the R package MitISEM, which provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in...
Persistent link: https://www.econbiz.de/10010326521
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010491347
The computing time for Markov Chain Monte Carlo (MCMC) algorithms can be prohibitively large for datasets with many observations, especially when the data density for each observation is costly to evaluate. We propose a framework where the likelihood function is estimated from a random subset of...
Persistent link: https://www.econbiz.de/10011442889
We propose a generic Markov Chain Monte Carlo (MCMC) algorithm to speed up computations for datasets with many observations. A key feature of our approach is the use of the highly efficient difference estimator from the survey sampling literature to estimate the log-likelihood accurately using...
Persistent link: https://www.econbiz.de/10011442891