Showing 1 - 10 of 1,941
Persistent link: https://www.econbiz.de/10009756308
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10011378346
We present an estimation and forecasting method, based on a differential evolution MCMC method, for inference in GARCH models subjected to an unknown number of structural breaks at unknown dates. We treat break dates as parameters and determine the number of breaks by computing the marginal...
Persistent link: https://www.econbiz.de/10011116269
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10011383033
This paper investigates the accuracy of forecasts from four DSGE models for inflation, output growth and the federal funds rate using a real-time dataset synchronized with the Fed’s Greenbook projections. Conditioning the model forecasts on the Greenbook nowcasts leads to forecasts that are as...
Persistent link: https://www.econbiz.de/10009792175
This paper revisits the accuracy of inflation forecasting using activity and expectations variables. We apply Bayesian model averaging across different regression specifications selected from a set of potential predictors that includes lagged values of inflation, a host of real activity data,...
Persistent link: https://www.econbiz.de/10014204417
This paper revisits inflation forecasting using reduced-form Phillips curve forecasts, that is, inflation forecasts that use activity and expectations variables. We propose a Phillips-curve-type model that results from averaging across different regression specifications selected from a set of...
Persistent link: https://www.econbiz.de/10003947544
This paper develops a Bayesian quantile regression model with time-varying parameters (TVPs) for forecasting in ation risks. The proposed parametric methodology bridges the empirically established benefits of TVP regressions for forecasting in ation with the ability of quantile regression to...
Persistent link: https://www.econbiz.de/10012643282
Both global imbalances and financial market (de-)regulation feature prominently among the potential causes of the global financial crisis, but they have been largely discussed separately. In this paper, we take a different angle and investigate the relationship between financial market...
Persistent link: https://www.econbiz.de/10010436581
In this paper we study the impact of model uncertainty, which occurs when linking a stress scenario to default probabilities, on reduced-form credit risk stress testing. This type of uncertainty is omnipresent in most macroeconomic stress testing applications due to short time series for banks'...
Persistent link: https://www.econbiz.de/10011897976