Showing 1 - 10 of 53
Persistent link: https://www.econbiz.de/10001406655
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10014158444
Multidimensional arrays (i.e. tensors) of data are becoming increasingly available and call for suitable econometric tools. We propose a new dynamic linear regression model for tensor-valued response variables and covariates that encompasses some well-known multivariate models such as SUR, VAR,...
Persistent link: https://www.econbiz.de/10014113407
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems.To...
Persistent link: https://www.econbiz.de/10012968298
We propose a new Bayesian Markov switching regression model for multi-dimensional arrays (tensors) of binary time series. We assume a zero-inflated logit dynamics with time-varying parameters and apply it to multi-layer temporal networks. The original contribution is threefold. First, in order...
Persistent link: https://www.econbiz.de/10012917228
In high-dimensional vector autoregressive (VAR) models, it is natural to have large number of predictors relative to the number of observations, and a lack of efficiency in estimation and forecasting. In this context, model selection is a difficult issue and standard procedures may often be...
Persistent link: https://www.econbiz.de/10012904383
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10013114226
We summarize the general combination approach by Billio et al. [2010]. In the combination model the weights follow logistic auto-regressive processes, change over time and their dynamics are possible driven by the past forecasting performances of the predictive densities. For illustrative...
Persistent link: https://www.econbiz.de/10013114729
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10013115354
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10013103116