Showing 1 - 10 of 121
Decision-makers often consult different experts to build reliable forecasts on variables of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture model to...
Persistent link: https://www.econbiz.de/10011755324
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of the Aitchinson's geometry of...
Persistent link: https://www.econbiz.de/10012143868
We examine the importance of incorporating macroeconomic information and, in particular, accounting for model uncertainty when forecasting the term structure of U.S. interest rates. We start off by analyzing and comparing the forecast performance of several individual term structure models. Our...
Persistent link: https://www.econbiz.de/10014196386
This paper revisits the accuracy of inflation forecasting using activity and expectations variables. We apply Bayesian model averaging across different regression specifications selected from a set of potential predictors that includes lagged values of inflation, a host of real activity data,...
Persistent link: https://www.econbiz.de/10014204417
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10014158444
This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights...
Persistent link: https://www.econbiz.de/10014158534
A Bayesian semi-parametric dynamic model combination is proposed in order to deal with a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing combination weight dependence between models as well as over time. It introduces an...
Persistent link: https://www.econbiz.de/10012971374
This paper shows entropic tilting to be a flexible and powerful tool for combining medium-term forecasts from BVARs with short-term forecasts from other sources (nowcasts from either surveys or other models). Tilting systematically improves the accuracy of both point and density forecasts, and...
Persistent link: https://www.econbiz.de/10012972351
Increasingly, professional forecasters and academic researchers present model-based and subjective or judgment-based forecasts in economics which are accompanied by some measure of uncertainty. In its most complete form this measure is a probability density function for future values of the...
Persistent link: https://www.econbiz.de/10012911829
A Bayesian dynamic compositional model is introduced that can deal with combining a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing for combination weight dependence across models and time. A compositional model with...
Persistent link: https://www.econbiz.de/10013241513