Showing 1 - 10 of 29
We develop a formal statistical approach to investigate the possibility that leading indicator variables have different lead times at business cycle peaks and troughs. For this purpose, we propose a novel Markov switching vector autoregressive model, where economic growth and leading indicators...
Persistent link: https://www.econbiz.de/10010731572
This paper demonstrates that the class of conditionally linear and Gaussian state-space models offers a general and convenient framework for simultaneously handling nonlinearity, structural change and outliers in time series. Many popular nonlinear time series models, including threshold, smooth...
Persistent link: https://www.econbiz.de/10010731582
Likelihoods and posteriors of instrumental variable regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating such contours using...
Persistent link: https://www.econbiz.de/10010731672
The performance of Monte Carlo integration methods like importance sampling or Markov Chain Monte Carlo procedures greatly depends on the choice of the importance or candidate density. Usually, such a density has to be "close" to the target density in order to yield numerically accurate results...
Persistent link: https://www.econbiz.de/10010731729
Likelihoods and posteriors of econometric models with strong endogeneity and weak instruments may exhibit rather non-elliptical contours in the parameter space. This feature also holds for cointegration models when near non-stationarity occurs and determining the number of cointegrating...
Persistent link: https://www.econbiz.de/10010731791
In Hoogerheide, Kaashoek and Van Dijk (2002) the class of neural network sampling methods is introduced to sample from a target (posterior) distribution that may be multi-modal or skew, or exhibit strong correlation among the parameters. In these methods the neural network is used as an...
Persistent link: https://www.econbiz.de/10010731804
Persistent link: https://www.econbiz.de/10002673492
This paper examines whether the Conference Board's Leading Economic Index (LEI) can be used for modeling and forecasting a more refined business cycle classification beyond the usual distinction between expansions and contractions. Univariate Markov-switching models for monthly coincident...
Persistent link: https://www.econbiz.de/10014176004
We examine the importance of incorporating macroeconomic information and, in particular, accounting for model uncertainty when forecasting the term structure of U.S. interest rates. We start off by analyzing and comparing the forecast performance of several individual term structure models. Our...
Persistent link: https://www.econbiz.de/10014196386
This paper demonstrates that the class of conditionally linear and Gaussian state-space models offers a general and convenient framework for simultaneously handling nonlinearity, structural change and outliers in time series. Many popular nonlinear time series models, including threshold, smooth...
Persistent link: https://www.econbiz.de/10014027875