Showing 1 - 10 of 53
Persistent link: https://www.econbiz.de/10014632013
This paper presents the R-package <B>MitISEM</B> (mixture of <I>t</I> by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture...</i></b>
Persistent link: https://www.econbiz.de/10011288392
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide, Opschoor and Van Dijk (2012), provides an automatic and flexible method to approximate a non-elliptical target density using...
Persistent link: https://www.econbiz.de/10011451514
A flexible forecast density combination approach is introduced that can deal with large data sets. It extends the mixture of experts approach by allowing for model set incompleteness and dynamic learning of combination weights. A dimension reduction step is introduced using a sequential...
Persistent link: https://www.econbiz.de/10012114778
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of the Aitchinson's geometry of...
Persistent link: https://www.econbiz.de/10012143868
This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel - typically a posterior density kernel - using an adaptive mixture of...
Persistent link: https://www.econbiz.de/10012143909
This paper presents the R-package <B>MitISEM</B> (mixture of <I>t</I> by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture...</i></b>
Persistent link: https://www.econbiz.de/10011272589
This paper presents the Matlab package DeCo (Density Combination) which is based on the paper by Billio et al. (2013) where a constructive Bayesian approach is presented for combining predictive densities originating from different models or other sources of information. The combination weights...
Persistent link: https://www.econbiz.de/10014158534
A Bayesian semi-parametric dynamic model combination is proposed in order to deal with a large set of predictive densities. It extends the mixture of experts and the smoothly mixing regression models by allowing combination weight dependence between models as well as over time. It introduces an...
Persistent link: https://www.econbiz.de/10012971374
This paper presents the R package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel - typically a posterior density kernel - using an adaptive mixture of...
Persistent link: https://www.econbiz.de/10012971949