Showing 1 - 10 of 12
The paper proposes a new nonparametric prior for two-dimensional vectors of survival functions (S1, S2). The definition we introduce is based on the notion of L´evy copula and it will be used to model, in a nonparametric Bayesian framework, two-sample survival data. Such an application will...
Persistent link: https://www.econbiz.de/10010335314
The paper proposes a new nonparametric prior for two-dimensional vectors of survival functions (S1,S2). The definition we introduce is based on the notion of Lévy copula and it will be used to model, in a nonparametric Bayesian framework, two-sample survival data. Such an application will yield...
Persistent link: https://www.econbiz.de/10008518902
The paper proposes a new nonparametric prior for two–dimensional vectors of survival functions (S1, S2). The definition we introduce is based on the notion of L´evy copula and it will be used to model, in a nonparametric Bayesian framework, two–sample survival data. Such an application will...
Persistent link: https://www.econbiz.de/10009651797
Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of...
Persistent link: https://www.econbiz.de/10011056550
Mixture models for hazard rate functions are widely used tools for addressing the statistical analysis of survival data subject to a censoring mechanism. The present paper introduces a new class of vectors of random hazard rate functions that are expressed as kernel mixtures of dependent...
Persistent link: https://www.econbiz.de/10011145336
In recent years the Dirichlet process prior has experienced a great success in the context of Bayesian mixture modelling. The idea of overcoming discreteness of its realizations by exploiting it in hierarchical models, combined with the development of suitable sampling techniques, represent one...
Persistent link: https://www.econbiz.de/10005077206
A Bayesian nonparametric methodology has been recently proposed in order to deal with the issue of prediction within species sampling problems. Such problems concern the evaluation, conditional on a sample of size n, of the species variety featured by an additional sample of size m. Genomic...
Persistent link: https://www.econbiz.de/10008518906
The past decade has seen a remarkable development in the area of Bayesian nonparametric inference both from a theoretical and applied perspective. As for the latter, the celebrated Dirichlet process has been successfully exploited within Bayesian mixture models leading to many interesting...
Persistent link: https://www.econbiz.de/10005135386
Species sampling problems have a long history in ecological and biological studies and a number of issues, including the evaluation of species richness, the design of sampling experiments, the estimation of rare species variety, are to be addressed. Such inferential problems have recently...
Persistent link: https://www.econbiz.de/10010587725
Persistent link: https://www.econbiz.de/10012512412