Showing 1 - 7 of 7
Persistent link: https://www.econbiz.de/10001630054
Persistent link: https://www.econbiz.de/10013483670
In this paper, we introduce a method of generating bootstrap samples with unknown patterns of cross-sectional/spatial dependence, which we call the spatial dependent wild bootstrap. This method is a spatial counterpart to the wild dependent bootstrap of Shao (2010) and generates data by...
Persistent link: https://www.econbiz.de/10014308576
This paper provides inference methods for best linear approximations to functions which are known to lie within a band. It extends the partial identification literature by allowing the upper and lower functions defining the band to be any functions, including ones carrying an index, which can be...
Persistent link: https://www.econbiz.de/10009692055
This paper provides inference methods for best linear approximations to functions which are known to lie within a band. It extends the partial identification literature by allowing the upper and lower functions defining the band to carry an index, and to be unknown but parametrically or...
Persistent link: https://www.econbiz.de/10012479546
This paper provides inference methods for best linear approximations to functions which are known to lie within a band. It extends the partial identifi cation literature by allowing the upper and lower functions de ning the band to carry an index, and to be unknown but parametrically or...
Persistent link: https://www.econbiz.de/10011978436
This paper provides inference methods for best linear approximations to functions which are known to lie within a band. It extends the partial identification literature by allowing the upper and lower functions defining the band to carry an index, and to be unknown but parametrically or...
Persistent link: https://www.econbiz.de/10013312500