Showing 1 - 7 of 7
We present limit theorems for locally stationary processes that have a one sided time-varying moving average representation. In particular, we prove a central limit theorem (CLT), a weak and a strong law of large numbers (WLLN, SLLN) and a law of the iterated logarithm (LIL) under mild...
Persistent link: https://www.econbiz.de/10014504385
We study the asymptotics of lattice power variations of two-parameter ambit fields driven by white noise. Our first result is a law of large numbers for power variations. Under a constraint on the memory of the ambit field, normalized power variations converge to certain integral functionals of...
Persistent link: https://www.econbiz.de/10010875068
The development of a general inferential theory for nonlinear models with cross-sectionally or spatially dependent data has been hampered by a lack of appropriate limit theorems. To facilitate a general asymptotic inference theory relevant to economic applications, this paper first extends the...
Persistent link: https://www.econbiz.de/10011052246
Consider an i.i.d. random field {Xk:k∈Z+d}, together with a sequence of unboundedly increasing nested sets Sj=⋃k=1jHk,j≥1, where the sets Hj are disjoint. The canonical example consists of the hyperbolas Hj={k∈Z+d:|k|=j}. We are interested in the number of “hyperbolas” Hj that...
Persistent link: https://www.econbiz.de/10011039775
Let <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\mathbb{N }=\{1, 2, 3, \ldots \}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="double-struck">N</mi> <mo>=</mo> <mo stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…</mo> <mo stretchy="false">}</mo> </mrow> </math> </EquationSource> </InlineEquation>. Let <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\{X, X_{n}; n \in \mathbb N \}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">{</mo> <mi>X</mi> <mo>,</mo> <msub> <mi>X</mi> <mi>n</mi> </msub> <mo>;</mo> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo stretchy="false">}</mo> </mrow> </math> </EquationSource> </InlineEquation> be a sequence of i.i.d. random variables, and let <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$S_{n}=\sum _{i=1}^{n}X_{i}, n \in \mathbb N $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <msub> <mi>S</mi> <mi>n</mi> </msub> <mo>=</mo> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </math> </EquationSource> </InlineEquation>....</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998625
This note studies conditions under which sequences of state variables generated by discrete-time stochastic optimal accumulation models have law of large numbers and central limit properties. Productivity shocks with unbounded support are considered. Instead of restrictions on the support of the...
Persistent link: https://www.econbiz.de/10005597791
Persistent link: https://www.econbiz.de/10012619804