Showing 1 - 5 of 5
We present a superadditive bargaining solution defined on a class of polytopes in /R/n. The solution generalizes the superadditive solution exhibited by MASCHLER and PERLES.
Persistent link: https://www.econbiz.de/10009452474
A cephoid is a Minkowski sum of finitely many prisms in R^n. We discuss the concept of duality for cephoids. Also, we show that the reference number uniquely defines a face. Based on these results, we exhibit two graphs on the outer surface of a cephoid. The first one corresponds to a maximal...
Persistent link: https://www.econbiz.de/10009452536
A cephoid is an algebraic ("Minkowski") sum of finitely many prisms in R^n. A cephoidal game is an NTU game the feasible sets of which are cephoids. We provide a version of the Shapley NTU value for such games based on the bargaining solution of Maschler-Perles.
Persistent link: https://www.econbiz.de/10009452537
A cephoid is a Minkowski sum of finitely many prisms in Rⁿ. We discuss the concept of duality for cephoids. Also, we show that the reference number uniquely defines a face. Based on these results, we exhibit two graphs on the outer surface of a cephoid. The first one corresponds to a maximal...
Persistent link: https://www.econbiz.de/10010272604
A cephoid is an algebraic ('Minkowski') sum of finitely many prisms in R^n. A cephoidal game is an NTU game the feasible sets of which are cephoids. We provide a version of the Shapley NTU value for such games based on the bargaining solution of Maschler-Perles.
Persistent link: https://www.econbiz.de/10010272611