Showing 1 - 7 of 7
When estimating DSGE models, the number of observable economic variables is usually kept small, and it is conveniently assumed that DSGE model variables are perfectly measured by a single data series. Building upon Boivin and Giannoni (2006), we relax these two assumptions and estimate a fairly...
Persistent link: https://www.econbiz.de/10014398279
This paper develops and illustrates a simple method to generate a DSGE model-based forecast for variables that do not explicitly appear in the model (non-core variables). We use auxiliary regressions that resemble measurement equations in a dynamic factor model to link the non-core variables to...
Persistent link: https://www.econbiz.de/10014214672
When estimating DSGE models, the number of observable economic variables is usually kept small, and it is conveniently assumed that DSGE model variables are perfectly measured by a single data series. Building upon Boivin and Giannoni (2006), we relax these two assumptions and estimate a fairly...
Persistent link: https://www.econbiz.de/10013120056
Persistent link: https://www.econbiz.de/10003980384
Persistent link: https://www.econbiz.de/10003827739
This paper develops and illustrates a simple method to generate a DSGE model-based forecast for variables that do not explicitly appear in the model (non-core variables). We use auxiliary regressions that resemble measurement equations in a dynamic factor model to link the non-core variables to...
Persistent link: https://www.econbiz.de/10012463776
This paper develops and illustrates a simple method to generate a DSGE model-based forecast for variables that do not explicitly appear in the model (non-core variables). We use auxiliary regressions that resemble measurement equations in a dynamic factor model to link the non-core variables to...
Persistent link: https://www.econbiz.de/10012757579