Showing 1 - 10 of 15
The maximum likelihood estimator (MLE) of the fractional difference parameter in the Gaussian ARFIMA(0,d,0) model is well known to be asymptotically N(0,6/pi2). This paper develops a second order asymptotic expansion to the distribution of this statistic. The correction term for the density is...
Persistent link: https://www.econbiz.de/10005463881
This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d_0 are included. The results establish that the bootstrap...
Persistent link: https://www.econbiz.de/10005464054
This paper derives second-order expansions for the distributions of the Whittle and profile plug-in maximum likelihood estimators of the fractional difference parameter in the ARFIMA(0,d,0) with unknown mean and variance. Both estimators are shown to be second-order pivotal. This extends earlier...
Persistent link: https://www.econbiz.de/10004990695
There is an emerging consensus in empirical finance that realized volatility series typically display long range dependence with a memory parameter (d) around 0.4 (Andersen et. al. (2001), Martens et al. (2004)). The present paper provides some analytical explanations for this evidence and shows...
Persistent link: https://www.econbiz.de/10005593334
In this paper, we prove the validity of an Edgeworth expansion to the distribution of the Whittle maximum likelihood estimator for stationary long-memory Gaussian models with unknown parameter theta in Theta subset R^{d_{theta}} . The error of the (s-2)-order expansion is shown to be...
Persistent link: https://www.econbiz.de/10005593482
There is an emerging consensus in empirical finance that realized volatility series typically display long range dependence with a memory parameter (d) around 0.4 (Andersen et al., 2001; Martens et al., 2004). The present article provides some illustrative analysis of how long memory may arise from...
Persistent link: https://www.econbiz.de/10005511887
It is well known that a one-step scoring estimator that starts from any N^{1/2}-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k = 1, higher-order asymptotic...
Persistent link: https://www.econbiz.de/10004990703
This paper provides bounds on the errors in coverage probabilities of maximum likelihood-based, percentile-t, parametric bootstrap confidence intervals for Markov time series processes. These bounds show that the parametric bootstrap for Markov time series provides higher-order improvements...
Persistent link: https://www.econbiz.de/10005093948
In time series regression with nonparametrically autocorrelated errors, it is now standard empirical practice to construct confidence intervals for regression coefficients on the basis of nonparametrically studentized t-statistics. The standard error used in the studentization is typically...
Persistent link: https://www.econbiz.de/10005087368
This paper establishes the higher-order equivalence of the k-step bootstrap, introduced recently by Davidson and MacKinnon (1999a), and the standard bootstrap. The k-step bootstrap is a very attractive alternative computationally to the standard bootstrap for statistics based on nonlinear...
Persistent link: https://www.econbiz.de/10005593243