Showing 1 - 10 of 11
Persistent link: https://www.econbiz.de/10012692312
Persistent link: https://www.econbiz.de/10012304598
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10010310396
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10010956400
We study quantile regression estimation for dynamic models with partially varying coefficients so that the values of some coefficients may be functions of informative covariates. Estimation of both parametric and nonparametric functional coefficients are proposed. In particular, we propose a...
Persistent link: https://www.econbiz.de/10008725945
We propose a modification of kernel time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that has to be estimated from the data. We establish the asymptotic...
Persistent link: https://www.econbiz.de/10005196009
We study quantile regression estimation for dynamic models with partially varying coefficients so that the values of some coefficients may be functions of informative covariates. Estimation of both parametric and nonparametric functional coefficients are proposed. In particular, we propose a...
Persistent link: https://www.econbiz.de/10010574075
This paper studies estimation and specification testing in threshold regression with endogeneity. Three key results differ from those in regular models. First, both the threshold point and the threshold effect parameters are shown to be identified without the need for instrumentation. Second, in...
Persistent link: https://www.econbiz.de/10011096433
First difference maximum likelihood (FDML) seems an attractive estimation methodology in dynamic panel data modeling because differencing eliminates fixed effects and, in the case of a unit root, differencing transforms the data to stationarity, thereby addressing both incidental parameter...
Persistent link: https://www.econbiz.de/10011052217
While differencing transformations can eliminate nonstationarity, they typically reduce signal strength and correspondingly reduce rates of convergence in unit root autoregressions. The present paper shows that aggregating moment conditions that are formulated in differences provides an orderly...
Persistent link: https://www.econbiz.de/10008493454