Showing 1 - 4 of 4
The testing of a computing model for a stationary time series is a standard task in statistics. When a parametric approach is used to model the time series, the question of goodness-of-fit arises. In this paper, we employ the empirical likelihood for an a-mixing process and formulate a statistic...
Persistent link: https://www.econbiz.de/10010310402
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator and an empirical likelihood based one for the mean of the response variable are defined. Both the estimators are proved to be asymptotically normal, with...
Persistent link: https://www.econbiz.de/10010310577
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator and an empirical likelihood based one for the mean of the response variable are defined. Both the estimators are proved to be asymptotically normal, with...
Persistent link: https://www.econbiz.de/10010983579
The testing of a computing model for a stationary time series is a standard task in statistics. When a parametric approach is used to model the time series, the question of goodness-of-fit arises. In this paper, we employ the empirical likelihood for an a-mixing process and formulate a statistic...
Persistent link: https://www.econbiz.de/10010983709