Showing 1 - 7 of 7
The classical binary classification problem is investigated when it is known in advance that the posterior probability function (or regression function) belongs to some class of functions. We introduce and analyze a method which effectively exploits this knowledge. The method is based on...
Persistent link: https://www.econbiz.de/10005572603
We obtain minimax lower and upper bounds for the expected distortion redundancy of empirically designed vector quantizers. We show that the mean squared distortion of a vector quantizer designed from $n$ i.i.d. data points using any design algorithm is at least $\Omega (n^{-1/2})$ away from the...
Persistent link: https://www.econbiz.de/10005772321
Minimax lower bounds for concept learning state, for example, that for each sample size $n$ and learning rule $g_n$, there exists a distribution of the observation $X$ and a concept $C$ to be learnt such that the expected error of $g_n$ is at least a constant times $V/n$, where $V$ is the VC...
Persistent link: https://www.econbiz.de/10005772365
Persistent link: https://www.econbiz.de/10002026055
Persistent link: https://www.econbiz.de/10015169999
We analyzed cigarette smoking among people aged 15 - 24 in approximately 90,000 households in the 1992 - 1999 U.S. Current Population Surveys. We modeled social influence as an informational externality, in which each young person's smoking informs her peers about its coolness.' The resulting...
Persistent link: https://www.econbiz.de/10014072323
Persistent link: https://www.econbiz.de/10012654918