Showing 1 - 10 of 19
This study focuses on the question whether nonlinear transformation of lagged time series values and residuals are able to systematically improve the average forecasting performance of simple Autoregressive models. Furthermore it investigates the potential superior forecasting results of a...
Persistent link: https://www.econbiz.de/10009310287
Although many macroeconomic time series are assumed to follow nonlinear processes, nonlinear models often do not provide better predictions than their linear counterparts. Furthermore, such models easily become very complex and difficult to estimate. The aim of this study is to investigate...
Persistent link: https://www.econbiz.de/10010434848
Persistent link: https://www.econbiz.de/10011659936
Persistent link: https://www.econbiz.de/10001774747
Statistical inferences for weights of the global minimum variance portfolio (GMVP) are of both theoretical and practical relevance for mean-variance portfolio selection. Daily realized GMVP weights depend only on realized covariance matrix computed from intraday highfrequency returns. In this...
Persistent link: https://www.econbiz.de/10012912220
We propose a Conditional Autoregressive Wishart (CAW) model for the analysis of realized covariance matrices of asset returns. Our model assumes a generalized linear autoregressive moving average structure for the scale matrix of the Wishart distribution allowing to accommodate for complex...
Persistent link: https://www.econbiz.de/10013133422
We propose a Conditional Autoregressive Wishart (CAW) model for the analysis of realized covariance matrices of asset returns. Our model assumes a generalized linear autoregressive moving average structure for the scale matrix of the Wishart distribution allowing to accommodate for complex...
Persistent link: https://www.econbiz.de/10003972054
Persistent link: https://www.econbiz.de/10009672608
Persistent link: https://www.econbiz.de/10009551424
We consider the problem of ex-ante forecasting conditional correlation patterns using ultra high frequency data. Flexible semiparametric predictors referring to the class of dynamic panel and dynamic factor models are adopted for daily forecasts. The parsimonious set up of our approach allows to...
Persistent link: https://www.econbiz.de/10003516408