Showing 1 - 10 of 153
We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be observed at different time frequencies, may have missing observations, and may exhibit common...
Persistent link: https://www.econbiz.de/10013061738
Persistent link: https://www.econbiz.de/10010233231
Persistent link: https://www.econbiz.de/10008907851
Persistent link: https://www.econbiz.de/10010470540
This paper has been accepted for publication in the 'Review of Economics and Statistics'.We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be...
Persistent link: https://www.econbiz.de/10011383248
We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be observed at different time frequencies, may have missing observations, and may exhibit common...
Persistent link: https://www.econbiz.de/10013129900
Persistent link: https://www.econbiz.de/10001718549
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010399681
We study the performance of two analytical methods and one simulation method for computing in-sample confidence bounds for time-varying parameters. These in-sample bounds are designed to reflect parameter uncertainty in the associated filter. They are applicable to the complete class of...
Persistent link: https://www.econbiz.de/10010484891
A new model for time-varying spatial dependencies is introduced. It forms an extension to the popular spatial lag model and can be estimated conveniently by maximum likelihood. The spatial dependence parameter is assumed to follow a generalized autoregressive score (GAS) process. The theoretical...
Persistent link: https://www.econbiz.de/10010491085