Showing 1 - 10 of 188
Persistent link: https://www.econbiz.de/10003460479
Persistent link: https://www.econbiz.de/10003864191
This paper studies a model widely used in the weak instruments literature and establishes admissibility of the weighted average power likelihood ratio tests recently derived by Andrews, Moreira, and Stock (2004). The class of tests covered by this admissibility result contains the Anderson and...
Persistent link: https://www.econbiz.de/10014026286
Persistent link: https://www.econbiz.de/10003459967
In this note, we propose the use of sparse methods (e.g. LASSO, Post-LASSO, p LASSO, and Post-p LASSO) to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments in the canonical Gaussian case. The methods apply even when...
Persistent link: https://www.econbiz.de/10014178853
The decision of whether to control for covariates, and how to select which covariates to include, is ubiquitous in psychological research. Failing to control for valid covariates can yield biased parameter estimates in correlational analyses or in imperfectly randomized experiments and...
Persistent link: https://www.econbiz.de/10012998831
Persistent link: https://www.econbiz.de/10010247741
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009747934
We propose robust methods for inference on the effect of a treatment variable on a scalar outcome in the presence of very many controls. Our setting is a partially linear model with possibly non-Gaussian and heteroscedastic disturbances where the number of controls may be much larger than the...
Persistent link: https://www.econbiz.de/10009548244
This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...
Persistent link: https://www.econbiz.de/10009419335