Showing 1 - 10 of 156
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10003474186
Persistent link: https://www.econbiz.de/10003390459
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10012466108
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10012779277
Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of...
Persistent link: https://www.econbiz.de/10013317404
Persistent link: https://www.econbiz.de/10001239942
Persistent link: https://www.econbiz.de/10001380313
There is a large theoretical literature on methods for estimating causal effects under unconfoundedness, exogeneity, or selection-on-observables type assumptions using matching or propensity score methods. Much of this literature is highly technical and has not made inroads into empirical...
Persistent link: https://www.econbiz.de/10010259540
Persistent link: https://www.econbiz.de/10011305700
Persistent link: https://www.econbiz.de/10010339676