Showing 1 - 10 of 3,296
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity is addressed by the theory of robust statistics which builds upon parametric specification, but provides...
Persistent link: https://www.econbiz.de/10014113950
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. This sensitivity addressed by the theory of robust statistics which builds upon parametric specification, but provides methodology...
Persistent link: https://www.econbiz.de/10013154935
Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data...
Persistent link: https://www.econbiz.de/10009618360
Many estimation methods of truncated and censored regression models such as the maximum likelihood and symmetrically censored least squares (SCLS) are sensitive to outliers and data contamination as we document. Therefore, we propose a semiparametric general trimmed estimator (GTE) of truncated...
Persistent link: https://www.econbiz.de/10014047660
The intercept in endogenous selection models is of fundamental importance for the evaluationof average treatment effects. While various intercept estimators for additive linear selectionmodels exist, there are currently no estimators for nonlinear selection models. This paper introduces...
Persistent link: https://www.econbiz.de/10012851221
We propose various semiparametric estimators for nonlinear selection models, where slope and intercept can be separately identifed. When the selection equation satisfies a monotonic index restriction, we suggest a local polynomial estimator, using only observations for which the marginal...
Persistent link: https://www.econbiz.de/10012518068
This paper presents a new data-driven bandwidth selector compatible with the small bandwidth asymptotics developed in Cattaneo, Crump, and Jansson (2009) for density-weighted average derivatives. The new bandwidth selector is of the plug-in variety, and is obtained based on a mean squared error...
Persistent link: https://www.econbiz.de/10014203492
In this paper, I study the estimation of nonlinear models of spatial processes. Generalized estimating equations (GEE) are applied to cross section data with spatial correlations. I use a partial quasi-maximum likelihood estimator (PQMLE) in the first step and use a GEE approach in the second...
Persistent link: https://www.econbiz.de/10014039926
In this paper we study doubly robust estimators of various average treatment effects under unconfoundedness. We unify and extend much of the recent literature by providing a very general identification result which covers binary and multi-valued treatments; unnormalized and normalized weighting;...
Persistent link: https://www.econbiz.de/10013055561
This paper shows how to construct locally robust semiparametric GMM estimators, meaning equivalently moment conditions have zero derivative with respect to the first step and the first step does not affect the asymptotic variance. They are constructed by adding to the moment functions the...
Persistent link: https://www.econbiz.de/10011517194