Showing 1 - 10 of 8,608
We consider the problem of estimating the conditional quantile of a time series fYtg at time t given covariates Xt, where Xt can ei- ther exogenous variables or lagged variables of Yt . The conditional quantile is estimated by inverting a kernel estimate of the conditional distribution function,...
Persistent link: https://www.econbiz.de/10010238365
In this paper, we propose a localized neural network (LNN) model and then develop the LNN based estimation and inferential procedures for dependent data in both cases with quantitative/qualitative outcomes. We explore the use of identification restrictions from a nonparametric regression...
Persistent link: https://www.econbiz.de/10014347671
We consider the problem of estimating the conditional quantile of a time series at time t given observations of the same and perhaps other time series available at time t - 1. We discuss sieve estimates which are a nonparametric versions of the Koenker-Bassett regression quantiles and do not...
Persistent link: https://www.econbiz.de/10003422933
This paper features an analysis of major currency exchange rate movements in relation to the US dollar, as constituted in US dollar terms. Euro, British pound, Chinese yuan, and Japanese yen are modelled using a variety of non-linear models, including smooth transition regression models,...
Persistent link: https://www.econbiz.de/10011443686
Persistent link: https://www.econbiz.de/10014159095
This paper initiates a non-linear fractional unit root test also known as autoregressive neural network–fractional integration (ARNN–FI) test. The test is based on a new multilayer perceptron of a neural network process which is applied in Yaya et al. (2021). Further, to investigate the...
Persistent link: https://www.econbiz.de/10014080994
The topic of this chapter is forecasting with nonlinear models. First, a number of well-known nonlinear models are introduced and their properties discussed. These include the smooth transition regression model, the switching regression model whose univariate counterpart is called threshold...
Persistent link: https://www.econbiz.de/10014023698
We develop a regime switching vector autoregression where artificial neural networks drive time variation in the coefficients of the conditional mean of the endogenous variables and the variance covariance matrix of the disturbances. The model is equipped with a stability constraint to ensure...
Persistent link: https://www.econbiz.de/10013314694
Identification of subgroups of patients for which treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Several tree-based algorithms have been developed for the detection of such treatment-subgroup interactions. In many...
Persistent link: https://www.econbiz.de/10011344260
This paper examines the limiting properties of the estimated parameters in the random field regression model recently proposed by Hamilton (Econometrica, 2001). Though the model is parametric, it enjoys the flexibility of the nonparametric approach since it can approximate a large collection of...
Persistent link: https://www.econbiz.de/10012723281