Showing 1 - 10 of 17
Persistent link: https://www.econbiz.de/10008657774
P(enalized)-splines and fractional polynomials (FPs) have emerged as powerful smoothing techniques with increasing popularity in several fields of applied research. Both approaches provide considerable flexibility, but only limited comparative evaluations of the performance and properties of the...
Persistent link: https://www.econbiz.de/10009736613
Modeling real estate prices in the context of hedonic models often involves fitting a Generalized Additive Model, where only the mean of a (lognormal) distribution is regressed on a set of variables without taking other parameters of the distribution into account. Thus far, the application of...
Persistent link: https://www.econbiz.de/10014477437
A method to predict lightning by postprocessing numerical weather prediction (NWP) output is developed for the region of the European Eastern Alps. Cloud-to-ground-flashes - detected by the ground-based ALDIS network - are counted on the 18x18 km2 grid of the 51-member NWP ensemble of the...
Persistent link: https://www.econbiz.de/10011875788
Persistent link: https://www.econbiz.de/10001743504
Persistent link: https://www.econbiz.de/10001743622
In this paper we present a nonparametric Bayesian approach for fitting unsmooth or highly oscillating functions in regression models with binary responses. The approach extends previous work by Lang et al. (2002) for Gaussian responses. Nonlinear functions are modelled by first or second order...
Persistent link: https://www.econbiz.de/10002529490
Kalyanam and Shively (1998) and van Heerde et al. (2001) have proposed semiparametric models to estimate the influence of price promotions on brand sales, and both obtained superior performance for their models compared to strictly parametric modeling. Following these researchers, we suggest...
Persistent link: https://www.econbiz.de/10002753423
P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and...
Persistent link: https://www.econbiz.de/10002754929
In this paper, we propose a generic Bayesian framework for inference in distributional regression models in which each parameter of a potentially complex response distribution and not only the mean is related to a structured additive predictor. The latter is composed additively of a variety of...
Persistent link: https://www.econbiz.de/10010189552