Showing 1 - 10 of 28
We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields...
Persistent link: https://www.econbiz.de/10013060048
Persistent link: https://www.econbiz.de/10014391462
We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields...
Persistent link: https://www.econbiz.de/10010235324
We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields...
Persistent link: https://www.econbiz.de/10010237679
Financial contagion and systemic risk measures are commonly derived from conditional quantiles by using imposed model assumptions such as a linear parametrization. In this paper, we provide model free measures for contagion and systemic risk which are independent of the specifcation of...
Persistent link: https://www.econbiz.de/10011309638
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003909174
There is increasing demand for models of time-varying and non-Gaussian dependencies for multivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10012966304
Persistent link: https://www.econbiz.de/10013549657
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10003953027
Complex phenomena in environmental sciences can be conveniently represented by several inter-dependent random variables. In order to describe such situations, copula-based models have been studied during the last year. In this paper, we consider a novel family of bivariate copulas, called...
Persistent link: https://www.econbiz.de/10010238359