Showing 1 - 10 of 376
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice for estimating treatment effects. This paper proposes data-driven model selection and model averaging procedures that address this issue for the propensity score...
Persistent link: https://www.econbiz.de/10010209255
In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice that the researchers make when estimating treatment effects. This paper proposes a data-driven way of averaging the estimators over the candidate specifications...
Persistent link: https://www.econbiz.de/10011309717
Persistent link: https://www.econbiz.de/10011704807
Persistent link: https://www.econbiz.de/10010256214
Persistent link: https://www.econbiz.de/10009778555
Persistent link: https://www.econbiz.de/10009682440
This paper investigates the finite sample performance of a comprehensive set of semi- and nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estimation,...
Persistent link: https://www.econbiz.de/10010467808
In a treatment effect model with unconfoundedness, treatment assignments are not only independent of potential outcomes given the covariates, but also given the propensity score alone. Despite this powerful dimension reduction property, adjusting for the propensity score is known to lead to an...
Persistent link: https://www.econbiz.de/10011486511
Persistent link: https://www.econbiz.de/10011302461
It is standard practice in applied work to rely on linear least squares regression to estimate the effect of a binary variable ("treatment") on some outcome of interest. In this paper I study the interpretation of the regression estimand when treatment effects are in fact heterogeneous. I show...
Persistent link: https://www.econbiz.de/10011387124