Showing 1 - 10 of 114
We introduce a new and general methodology for analyzing vector autoregressive models with time-varying coefficient matrices and conditionally heteroskedastic disturbances. Our proposed method is able to jointly treat a dynamic latent factor model for the autoregressive coefficient matrices and...
Persistent link: https://www.econbiz.de/10013220281
We propose a new unified approach to identifying and estimating spatio-temporal dependence structures in large panels. The model accommodates global cross-sectional dependence due to global dynamic factors as well as local cross-sectional dependence, which may arise from local network...
Persistent link: https://www.econbiz.de/10013241811
We propose a new unified approach to identifying and estimating spatio-temporal dependence structures in large panels. The model accommodates global crosssectional dependence due to global dynamic factors as well as local cross-sectional dependence, which may arise from local network structures....
Persistent link: https://www.econbiz.de/10012421000
We introduce a new and general methodology for analyzing vector autoregressive models with time-varying coefficient matrices and conditionally heteroskedastic disturbances. Our proposed method is able to jointly treat a dynamic latent factor model for the autoregressive coefficient matrices and...
Persistent link: https://www.econbiz.de/10012591572
We argue that existing methods for the treatment of missing observations in observation-driven models lead to inconsistent inference. We provide a formal proof of this inconsistency for a Gaussian model with time-varying mean. A Monte Carlo simulation study supports this theoretical result and...
Persistent link: https://www.econbiz.de/10014116185
We first consider an extension of the generalized autoregressive conditional heteroskedasticity (GARCH) model that allows for a more flexible weighting of financial squared-returns for the filtering of volatility. The parameter for the squared-return in the GARCH model is time-varying with an...
Persistent link: https://www.econbiz.de/10012951597
Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used...
Persistent link: https://www.econbiz.de/10012981759
This paper introduces a novel simulation-based filtering method for general state space models. It allows for the computation of time-varying conditional means, quantiles, and modes, but also for the prediction of latent variables in general. The method relies on generating artificial samples of...
Persistent link: https://www.econbiz.de/10014358032
This paper considers a stochastic volatility model featuring an asymmetric stable error distribution and a novel way of accounting for the leverage effect. We adopt simulation-based methods to address key challenges in parameter estimation, the filtering of time-varying volatility, and...
Persistent link: https://www.econbiz.de/10014433826
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010250505