Showing 1 - 10 of 759
This paper proposes new ℓ1-penalized quantile regression estimators for panel data, which explicitly allows for individual heterogeneity associated with covariates. We conduct Monte Carlo simulations to assess the small sample performance of the new estimators and provide comparisons of new...
Persistent link: https://www.econbiz.de/10010238040
We present a semiparametric method to estimate group-level dispersion, which is particularly effective in the presence of censored data. We apply this procedure to obtain measures of occupation-specific wage dispersion using top-coded administrative wage data from the German IAB Employment...
Persistent link: https://www.econbiz.de/10009775634
Identification in most sample selection models depends on the independence of the regressors and the error terms conditional on the selection probability. All quantile and mean functions are parallel in these models; this implies that quantile estimators cannot reveal any - per assumption...
Persistent link: https://www.econbiz.de/10009633861
This paper examines the effect of measurement error in the dependent variable on quantile regression, because unlike OLS regression, even classical measurement error can generate bias. I examine the pattern and size of the bias using both simulation and an empirical example. The simulations...
Persistent link: https://www.econbiz.de/10010439168
This paper proposes a quantile regression estimator for a heterogeneous panel model with lagged dependent variables and interactive effects. The paper adopts the Common Correlated Effects (CCE) approach proposed by Pesaran (2006) and Chudik and Pesaran (2015) and demonstrates that the extension...
Persistent link: https://www.econbiz.de/10011898624
We show that the generalized method of moments (GMM) estimation problem in instrumental variable quantile regression (IVQR) models can be equivalently formulated as a mixed integer quadratic programming problem. This enables exact computation of the GMM estimators for the IVQR models. We...
Persistent link: https://www.econbiz.de/10011775368
The impact of measurement error in explanatory variables on quantile regression functions is investigated using a small variance approximation. The approximation shows how the error contaminated and error free quantile regression functions are related. A key factor is the distribution of the...
Persistent link: https://www.econbiz.de/10011644163
In the present paper we study the dynamics of penalization parameter ? of the least absolute shrinkage and selection operator (Lasso) method proposed by Tibshirani (1996) and extended into quantile regression context by Li and Zhu (2008). The dynamic behaviour of the parameter ? can be observed...
Persistent link: https://www.econbiz.de/10011557306
The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2005) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the non-smoothness and non-convexity of the IVQR GMM objective function. This...
Persistent link: https://www.econbiz.de/10012053040
This study develops cluster robust inference methods for panel quantile regression (QR) models with individual fixed effects, allowing for temporal correlation within each individual. The conventional QR standard errors can seriously underestimate the uncertainty of estimators and, therefore,...
Persistent link: https://www.econbiz.de/10012213981