Showing 1 - 10 of 2,433
Persistent link: https://www.econbiz.de/10010473439
In this paper we consider regression models with forecast feedback. Agents' expectations are formed via the recursive estimation of the parameters in an auxiliary model. The learning scheme employed by the agents belongs to the class of stochastic approximation algorithms whose gain sequence is...
Persistent link: https://www.econbiz.de/10011381034
In this paper we consider regression models with forecast feedback. Agents' expectations are formed via the recursive estimation of the parameters in an auxiliary model. The learning scheme employed by the agents belongs to the class of stochastic approximation algorithms whose gain sequence is...
Persistent link: https://www.econbiz.de/10013139606
Strong consistency of least squares estimators of the slope parameter in simple linear regression models is established for predetermined stochastic regressors. The main result covers a class of models which falls outside the applicability of what is presently available in the literature. An...
Persistent link: https://www.econbiz.de/10013036394
In this paper we examine the asymptotic properties of the estimator of the long-run coefficient (LRC) in a dynamic regression model with integrated regressors and serially correlated errors. We show that the OLS estimators of the regression coefficients are inconsistent but the OLS-based...
Persistent link: https://www.econbiz.de/10001644304
This paper is concerned with efficient GMM estimation and inference in GARCH models. Sufficient conditions for the estimator to be consistent and asymptotically normal are established for the GARCH(1,1) conditional variance process. In addition efficiency results are obtained in the general...
Persistent link: https://www.econbiz.de/10001600059
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
Simple, multi-step estimators are developed for the popular GARCH(1,1) model, where these estimators are either available entirely in closed form or dependent upon a preliminary estimate from, for example, quasi-maximum likelihood. Identification sources to asymmetry in the model's innovations,...
Persistent link: https://www.econbiz.de/10012181040
Least squares regression with heteroskedasticity consistent standard errors ("OLS-HC regression") has proved very useful in cross section environments. However, several major difficulties, which are generally overlooked, must be confronted when transferring the HC technology to time series...
Persistent link: https://www.econbiz.de/10014576582
We introduce a new regression diagnostic, tailored to time-series and panel-data regressions, which characterizes the sensitivity of the OLS estimate to distinct time-series variation at different frequencies. The diagnostic is built on the novel result that the eigenvectors of a random walk...
Persistent link: https://www.econbiz.de/10015084320