Showing 1 - 10 of 30
We propose a simple model selection test for choosing among two parametric likelihoods which can be applied in the most general setting without any assumptions on the relation between the candidate models and the true distribution. That is, both, one or neither is allowed to be correctly...
Persistent link: https://www.econbiz.de/10011517190
A two-step generalized method of moments estimation procedure can be made robust to heteroskedasticity and autocorrelation in the data by using a nonparametric estimator of the optimal weighting matrix. This paper addresses the issue of choosing the corresponding smoothing parameter (or...
Persistent link: https://www.econbiz.de/10010336485
Persistent link: https://www.econbiz.de/10002215635
Persistent link: https://www.econbiz.de/10003736849
Persistent link: https://www.econbiz.de/10011743179
Persistent link: https://www.econbiz.de/10012303629
Cross-validation is the most common data-driven procedure for choosing smoothing parameters in nonparametric regression. For the case of kernel estimators with iid or strong mixing data, it is well-known that the bandwidth chosen by cross-validation is optimal with respect to the average squared...
Persistent link: https://www.econbiz.de/10012969769
Slope coefficients in rank-rank regressions are popular measures of intergenerational mobility, for instance in regressions of a child's income rank on their parent's income rank. In this paper, we first point out that commonly used variance estimators such as the homoskedastic or robust...
Persistent link: https://www.econbiz.de/10014416045
Persistent link: https://www.econbiz.de/10011545519
Cross-validation is the most common data-driven procedure for choosing smoothing parameters in nonparametric regression. For the case of kernel estimators with iid or strong mixing data, it is well-known that the bandwidth chosen by crossvalidation is optimal with respect to the average squared...
Persistent link: https://www.econbiz.de/10011441948