Showing 1 - 10 of 1,565
We propose a new simulation-based estimation method, adversarial estimation, for structural models. The estimator is formulated as the solution to a minimax problem between a generator (which generates synthetic observations using the structural model) and a discriminator (which classifies if an...
Persistent link: https://www.econbiz.de/10012251911
The classical canonical correlation analysis is extremely greedy to maximize the squared correlation between two sets of variables. As a result, if one of the variables in the dataset-1 is very highly correlated with another variable in the dataset-2, the canonical correlation will be very high...
Persistent link: https://www.econbiz.de/10014046874
We introduce two neural network models designed for application in statistical learning. The mean-variance neural network regression model allows us to simultaneously model the mean and the variance of a response variable. In case of a two-dimensional response vector, the...
Persistent link: https://www.econbiz.de/10014104671
Background: The increased availability of claims data allows one to build high dimensional datasets, rich in covariates, for accurately estimating treatment effects in medical and epidemiological cohort studies. This paper shows the full potential of machine learning for the estimation of...
Persistent link: https://www.econbiz.de/10012908991
This paper examines the limiting properties of the estimated parameters in the random field regression model recently proposed by Hamilton (Econometrica, 2001). Though the model is parametric, it enjoys the flexibility of the nonparametric approach since it can approximate a large collection of...
Persistent link: https://www.econbiz.de/10012723281
We propose a new simulation-based estimation method, adversarial estimation, for structural models. The estimator is formulated as the solution to a minimax problem between a generator (which generates synthetic observations using the structural model) and a discriminator (which classifies if an...
Persistent link: https://www.econbiz.de/10014092806
Persistent link: https://www.econbiz.de/10014438258
Persistent link: https://www.econbiz.de/10009748700
Parameter estimates of structural economic models are often difficult to interpret at the light of the underlying economic theory. Bayesian methods have become increasingly popular as a tool for conducting inference on structural models since priors offer a way to exert control over the...
Persistent link: https://www.econbiz.de/10010464781
Indirect Inference (I‐I) estimation of structural parameters θ requires matching observed and simulated statistics, which are most often generated using an auxiliary model that depends on instrumental parameters β. The estimators of the instrumental parameters will encapsulate the...
Persistent link: https://www.econbiz.de/10012202226