Showing 1 - 10 of 149
We consider an observation-driven location model where the unobserved location variable is modeled as a random walk process and where the error variable is from a mixture of normal distributions. The mixed normal distribution can approximate many continuous error distributions accurately. We...
Persistent link: https://www.econbiz.de/10012795401
We introduce a nonlinear semi-parametric model that allows for the robust filtering of a common stochastic trend in a multivariate system of cointegrated time series. The observation-driven stochastic trend can be specified using flexible updating mechanisms. The model provides a general...
Persistent link: https://www.econbiz.de/10015073352
Persistent link: https://www.econbiz.de/10015073825
The equivalence of the Beveridge-Nelson decomposition and the trend-cycle decomposition is well established. In this paper we argue that this equivalence is almost immediate when a Gaussian score-driven location model is considered. We also provide a natural extension towards heavy-tailed...
Persistent link: https://www.econbiz.de/10014450610
We develop a score-driven time-varying parameter model where no particular parametric error distribution needs to be specified. The proposed method relies on a versatile spline-based density, which produces a score function that follows a natural cubic spline. This flexible approach nests the...
Persistent link: https://www.econbiz.de/10015198647
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010250505
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The...
Persistent link: https://www.econbiz.de/10010390075
We study the performance of two analytical methods and one simulation method for computing in-sample confidence bounds for time-varying parameters. These in-sample bounds are designed to reflect parameter uncertainty in the associated filter. They are applicable to the complete class of...
Persistent link: https://www.econbiz.de/10010484891
We study the performance of alternative methods for calculating in-sample confidence and out of-sample forecast bands for time-varying parameters. The in-sample bands reflect parameter uncertainty only. The out-of-sample bands reflect both parameter uncertainty and innovation uncertainty. The...
Persistent link: https://www.econbiz.de/10011295703
Persistent link: https://www.econbiz.de/10011621857