Showing 1 - 10 of 44
Persistent link: https://www.econbiz.de/10003813787
This paper concerns estimating parameters in a high-dimensional dynamic factormodel by the method of maximum likelihood. To accommodate missing data in theanalysis, we propose a new model representation for the dynamic factor model. Itallows the Kalman filter and related smoothing methods to...
Persistent link: https://www.econbiz.de/10011377572
We consider the dynamic factor model and show how smoothness restrictions can be imposed on factor loadings by using cubic spline functions. We develop statistical procedures based on Wald, Lagrange multiplier and likelihood ratio tests for this purpose. The methodology is illustrated by...
Persistent link: https://www.econbiz.de/10013071178
This paper concerns estimating parameters in a high-dimensional dynamic factor model by the method of maximum likelihood. To accommodate missing data in the analysis, we propose a new model representation for the dynamic factor model. It allows the Kalman filter and related smoothing methods to...
Persistent link: https://www.econbiz.de/10012756283
Persistent link: https://www.econbiz.de/10011448659
We propose a dynamic factor model which we use to analyze the relationship between education participation and national unemployment, as well as to forecast the number of students across the many different types of education. By clustering the factor loadings associated with the dynamic...
Persistent link: https://www.econbiz.de/10013250494
We develop a high-dimensional and partly nonlinear non-Gaussian dynamic factor model for the decomposition of systematic default risk conditions into a set of latent components that correspond with macroeconomic/financial, default-specific (frailty), and industry-specific effects. Discrete...
Persistent link: https://www.econbiz.de/10013102101
The multivariate analysis of a panel of economic and financial time series with mixed frequencies is a challenging problem. The standard solution is to analyze the mix of monthly and quarterly time series jointly by means of a multivariate dynamic model with a monthly time index: artificial...
Persistent link: https://www.econbiz.de/10013049293
We consider the dynamic factor model where the loading matrix, the dynamic factors and the disturbances are treated as latent stochastic processes. We present empirical Bayes methods that enable the efficient shrinkage-based estimation of the loadings and the factors. We show that our estimates...
Persistent link: https://www.econbiz.de/10013053560
We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be observed at different time frequencies, may have missing observations, and may exhibit common...
Persistent link: https://www.econbiz.de/10013061738