Showing 1 - 10 of 24
Persistent link: https://www.econbiz.de/10009668442
Persistent link: https://www.econbiz.de/10009270387
Persistent link: https://www.econbiz.de/10003353030
The authors replicate and extend the Monte Carlo experiment presented in Doz et al. (2012) on alternative (time-domain based) methods for extracting dynamic factors from large datasets; they employ open source software and consider a larger number of replications and a wider set of scenarios....
Persistent link: https://www.econbiz.de/10012173815
The authors replicate and extend the Monte Carlo experiment presented in Doz, Giannone and Reichlin (A Quasi-Maximum Likelihood Approach For Large, Approximate Dynamic Factor Models, Review of Economics and Statistics, 2012) on alternative (time-domain based) methods for extracting dynamic...
Persistent link: https://www.econbiz.de/10012221951
This paper shows how large-dimensional dynamic factor models are suitable for structural analysis. We establish sufficient conditions for identification of the structural shocks and the associated impulse-response functions. In particular, we argue that, if the data follow an approximate factor...
Persistent link: https://www.econbiz.de/10012778037
This paper considers quasi-maximum likelihood estimations of a dynamic approximate factor model when the panel of time series is large. Maximum likelihood is analyzed under different sources of misspecification: omitted serial correlation of the observations and cross-sectional correlation of...
Persistent link: https://www.econbiz.de/10013317480
This paper describes an algorithm to compute the distribution of conditional forecasts, i.e. projections of a set of variables of interest on future paths of some other variables, in dynamic systems. The algorithm is based on Kalman filtering methods and is computationally viable for large...
Persistent link: https://www.econbiz.de/10013047977
Persistent link: https://www.econbiz.de/10010376924
Persistent link: https://www.econbiz.de/10010363298