Showing 1 - 10 of 30
Many empirical studies have shown that factor models produce relatively accurate forecasts compared to alternative short-term forecasting models. These empirical findings have been established for different macroeconomic data sets and different forecast horizons. However, various specifications...
Persistent link: https://www.econbiz.de/10010491343
This study extends the Diebold-Yilmaz Connectedness Index (DYCI) methodology and, based on forecast error covariance decompositions, derives a network risk model for a portfolio of assets. As a normalized measure of the sum of variance contributions, system-wide connectedness averages out the...
Persistent link: https://www.econbiz.de/10012388931
Factor and sparse models are two widely used methods to impose a low-dimensional structure in high dimension. They are seemingly mutually exclusive. In this paper, we propose a simple lifting method that combines the merits of these two models in a supervised learning methodology that allows to...
Persistent link: https://www.econbiz.de/10012817071
The accession of ten countries into the European Union makes the forecasting of their key macroeconomic indicators an exercise of some importance. Because of the transition period, only short spans of reliable time series are available, suggesting the adoption of simple time series models as...
Persistent link: https://www.econbiz.de/10011604528
Many empirical studies have shown that factor models produce relatively accurate forecasts compared to alternative short-term forecasting models. These empirical findings have been established for different macroeconomic data sets and different forecast horizons. However, various specifications...
Persistent link: https://www.econbiz.de/10011257503
This paper compares forecast accuracy of two Dynamic Factor Models in a context of constraints interms of data availability. Estimation technique and properties of the factor decomposition depend onthe cross section dimension of the dataset included in each model: a large dataset composed by...
Persistent link: https://www.econbiz.de/10011193734
We show that the adaptive Lasso (aLasso) and the adaptive group Lasso (agLasso) are oracle efficient in stationary vector autoregressions where the number of parameters per equation is smaller than the number of observations. In particular, this means that the parameters are estimated...
Persistent link: https://www.econbiz.de/10010851261
The paper presents forecasts of headline and core inflation in Estonia with factor models in a recursive pseudo out-of-sample framework. The factors are constructed with a principal component analysis and are then incorporated into vector autoregressive (VAR) forecasting models. The analyses...
Persistent link: https://www.econbiz.de/10011868520
Standard practice for the estimation of dynamic stochastic general equilibrium (DSGE) models maintains the assumption that economic variables are properly measured by a single indicator, and that all relevant information for the estimation is summarized by a small number of data series. However,...
Persistent link: https://www.econbiz.de/10004998848
The estimation of dynamic factor models for large sets of variables has attracted considerable attention recently, due to the increased availability of large datasets. In this paper we propose a new methodology for estimating factors from large datasets based on state space models, discuss its...
Persistent link: https://www.econbiz.de/10005106328