Showing 1 - 4 of 4
This article reviews ten notable financial applications where ML has moved beyond hype and proven its usefulness. This success does not mean that the use of ML in finance does not face important challenges. The main conclusion is that there is a strong case for applying ML to current financial...
Persistent link: https://www.econbiz.de/10012889300
There are three fundamental ways of testing the validity of an investment algorithm against historical evidence: a) the walk-forward method; b) the resampling method; and c) the Monte Carlo method. By far the most common approach followed among academics and practitioners is the walk-forward...
Persistent link: https://www.econbiz.de/10012862212
Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for...
Persistent link: https://www.econbiz.de/10012862292
We evaluate the probability that an estimated Sharpe ratio exceeds a given threshold in presence of non-Normal returns. We show that this new uncertainty-adjusted investment skill metric (called Probabilistic Sharpe ratio, or PSR) has a number of important applications: First, it allows us to...
Persistent link: https://www.econbiz.de/10012857443