Showing 1 - 10 of 21
This paper proposes a methodology for modelling time series of realized covariance matrices in order to forecast multivariate risks. The approach allows for flexible dynamic dependence patterns and guarantees positive definiteness of the resulting forecasts without imposing parameter...
Persistent link: https://www.econbiz.de/10005440044
Using a unique high-frequency futures dataset, we characterize the response of U.S., German and British stock, bond and foreign exchange markets to real-time U.S. macroeconomic news. We find that news produces conditional mean jumps, hence high-frequency stock, bond and exchange rate dynamics...
Persistent link: https://www.econbiz.de/10005440071
A two-stage forecasting approach for long memory time series is introduced. In the first step we estimate the fractional exponent and, applying the fractional differencing operator, we obtain the underlying weakly dependent series. In the second step, we perform the multi-step ahead forecasts...
Persistent link: https://www.econbiz.de/10011099291
We construct daily house price indices for ten major U.S. metropolitan areas. Our calculations are based on a comprehensive database of several million residential property transactions and a standard repeat-sales method that closely mimics the methodology of the popular monthly Case-Shiller...
Persistent link: https://www.econbiz.de/10011118617
We propose a new family of easy-to-implement realized volatility based forecasting models. The models exploit the asymptotic theory for high-frequency realized volatility estimation to improve the accuracy of the forecasts. By allowing the parameters of the models to vary explicitly with the...
Persistent link: https://www.econbiz.de/10011207425
The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...
Persistent link: https://www.econbiz.de/10010851192
We examine US housing price forecastability using a common factor approach based on a large panel of 122 economic time series. We find that a simple three-factor model generates an explanatory power of about 50% in one-quarter ahead in-sample forecasting regressions. The predictive power of the...
Persistent link: https://www.econbiz.de/10010851257
We show that the adaptive Lasso (aLasso) and the adaptive group Lasso (agLasso) are oracle efficient in stationary vector autoregressions where the number of parameters per equation is smaller than the number of observations. In particular, this means that the parameters are estimated...
Persistent link: https://www.econbiz.de/10010851261
A modification of the self-perturbed Kalman filter of Park and Jun (1992) is proposed for the on-line estimation of models subject to parameter instability. The perturbationterm in the updating equation of the state covariance matrix is weighted by the measurement error variance, thus avoiding...
Persistent link: https://www.econbiz.de/10010851262
Macroeconomic forecasting using factor models estimated by principal components has become a popular research topic with many both theoretical and applied contributions in the literature. In this paper we attempt to address an often neglected issue in these models: The problem of outliers in the...
Persistent link: https://www.econbiz.de/10010851270